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We study the structural properties of self-attracting walkslidimensions using scaling arguments and
Monte Carlo simulations. We find evidence of a transition analogous t@ ttnansition of polymers. Above a
critical attractive interaction., the walk collapses and the exponentandk, characterizing the scaling with

time t of the mean square end-to-end distagigé) ~t2”

and the average number of visited si{&~t*, are

universal and given by=1/(d+1) andk=d/(d+1). Belowu,, the walk swells and the exponents are as
with no interaction, i.e.p=1/2 for alld, k=1/2 ford=1 andk=1 for d=2. At u., the exponents are found

to be in a different universality class.

PACS numbd(s): 68.35.Rh, 05.40-a, 64.60.Fr

In recent years different models of random walks with

In this Rapid Communication we present scaling argu-

memory or interaction have been studied. They can be diments and extensive numerical simulations (f8f) and(S)

vided into statid 1] and dynamid2,3] models; for an over-
view we refer to the papers of Duxbury and Queiftfand
Oettinger[2]. Most efforts concentrated on models with re-
pulsive interactions, in particular self-avoiding walks
(SAW'’s), which have been found useful for investigating
polymers in dilute solution. When an attraction term
exp(—A/T), A<O, is included, the SAW model reveals a
swelling-collapse transition at the® point” T=0 [4,5]. In

that strongly suggest the existence of a critical attractign
in d=2, with three different universality classes foru.,
u<u., andu=u.. Belowu;, the SATW is in the univer-
sality class of random walks, with=1/2 andk=1. Above
u., the SATW collapses and the exponents change’ to
=1/(d+1) andk=d/(d+1). At the critical point, the ex-
ponents arer.= 0.40+0.01 andk,=0.80+0.01 ind=2 and
v.=0.32+0.01 andk,=0.91+0.03 ind= 3 [11]. The exis-

contrast, the likewise challenging case of random walks withence ofu,, is in striking similarity to the® point phenom-
a similar attractive interaction, but without repulsion, hasenon of linear polymer§4,5] where three different univer-
been less understood. This problem was solved only for ongality classes fof >0, T=0, andT<® exist.

dimension, while in higher dimensions the results are highly We used Monte Carlo simulations to studg?(t)) and
controversial. Our numerical and analytical study of attrac{S(t)). Figure 1 shows representative results/@f(t)) for
tive random walks suggests that there also exists a swellingseveral values ofi in d=3. For large values afi the curves

collapse transition, that is analogous to ®etransition in
polymers.

bend down toward the slope ofv2Z0.5 while for small val-
ues ofu the curves bend up toward the slope of=21. At

We focus on the dynamiC model of Self'attracting WaIkSSome intermediate critical Va'uecg 19' the S|0pe is ap-

(SATW's) [3], where a random walker jumps with probabil-
ity p~exp(u) [6] to a nearest neighbor site, with=1 for
already visited sites anui=0 for not visited sites. The inter-
action parameteu is equivalent to—A/T for linear poly-
mers. Foru>0, the walk is attracted to its own trajectdrg].

The structural behavior of the walk can be characterized by

the mean square end-to-end dista(R&(t)) and the average
number of visited site§S(t)). It is expected that these quan-
tities scale with time as

proximately 2v.=0.64. The mean number of visited sites
(S(t)) shows a similar behavior, witk=1 belowu., k.

10
(R (1)

<R2(t)>~tzy (1a) 10
and
(S(t))~1X, (1b) "
Earlier analyses for SATW's in two and three dimensions !

were not conclusive, and the numerical data have been con- g, 1. The mean square end-to-end distafR¥t)) vst up to

troversially interpreted[3,8—10. While Sapozhnikov[3]

t=10® time steps averaged over 1000 configurations for each at-

considered the possibility of the existence of a critical attractraction u=0, 1.5, 1.9, 2.25, and 4 id=3. Note that for large

tion u. (though his numerical results were not conclusive

values ofu the curves bend down toward the slope aof=21/2,

Lee[8] and Reid 9] argued strongly against the existence ofwhile for small values ofi the curves bend up toward the slope of

uc, since they found andk to decrease continuously with
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FIG. 2. The values of the exponettand v vs attractioru in (a) 10’“’10_12 T T AT~
d=3 and(b) d=2, obtained by a least square fit of the slope of
In{RE(t)) and INS(t)) vs Int for larget, respectively(see Fig. 1 1/t

Shown are the results far=10F(A), t=107(V), andt=10°(H). ) )
Note that foru>u, and largett the values ok and v approach the FIG. 3. Scaling plots fo(R*(t))(O) and(S(t))(LJ) for t>1
theoretical predictions of Eq5), marked as dashed lines. We esti- 2nd 20 values of &u<3 in (@) d=3 and(b) d=2. For conve-

mate the value ofi, to be u,=1.92+0.03 ind=3, andu,=0.88 nience, the data fofS(t)) have been shifted by ¥0In d=3 for
+0.05 ind=2 (marked by arrows v.=0.32,k.=0.91, andu,=1.92, we find the best collapse far

=5.0; ind=2 for v.=0.40, k,=0.80, andu.=0.88, we find the
best collapse fow=7. The straight lines represent the exponents

=0.91 atu,, andk=0.75 abovel.. Figure Za) summarizes given in Table 1.

the asymptotic exponents and k as functions ofu in d

= 3. We obtained similar results oh= 2, the asymptotic val-
ues ofv andk are presented in Fig(B). In Table | the values
of the exponents are summarized and compared with th
analogous known exponents for ti transition in linear

k=vd, u>u,. 3)

For sufficiently strong attraction it takes a very long time for
olvmers the walker to jump to an unvisited site. Before doing this, the
poly : . . walker diffuses around on the visited sites, which are located
In the following we present analytical arguments for the

~with equal probability on any of the cluster sites. Hence the

g;f’ggdei?]tssa%geaggﬂfna;t':%émg'rcg gﬁ;ﬁéﬂ?'lﬁg; m;rtr,:re;;_mean cluster growth rate is proportional to the ratio between
: gs-. y 9 the number of boundary sites and the total number of the
tion u>u, the grown clusters are compact, so that the aver- : )

o . : . cluster site§3,12]:
age number of visited sites scales with the rms displacement

(R(Y)=(R¥(1))*? as ds) (R
W~<—R>d—~t : 4

(S())~(R(1))4, u>u,. 2
Thus(S)~t~"*1. Combining this result with Eqg1b) and
Comparing Egs(1) and(2) yields (3), we obtain
TABLE I. Comparison of the exponentsandk as well as the estimated values for the transition points
u. for random walkg§RW) and© for SAW'’s on hypercubic lattices. For values related to €héransition,
see Ref[5] and references therein.

RW SAW
u<ug u=u, u>ue 1/T<1/6 1T=1/06 1/T>1/6
d=2 1/2 0.40+0.01 1/3 3/4 a/7 1/2
1 0.80+0.01 2/3 1 1 1
u.=0.88:0.05 1hy=0.65+0.03
d=3 1/2 0.32:0.01 1/4 0.59 1/2 1/3
1 0.91+0.03 3/4 1 1 1
u,=1.92+0.03 1b,=0.5+0.03




RAPID COMMUNICATIONS

PRE 61 SWELLING-COLLAPSE TRANSITION OF SELF. .. R1007
1 and
VTart (53
S(t)~teg..(t/ty), (6b)
and
d where
k= —-+ (5b)
d+1 _
te=|u—uc| "« (60)
for u>u,.

Because of universality we assume that these result§he plus sign refers ta>u., the minus sign tai<u,, and

which are in agreement with the exact values 1/2 andk

the exponenir has to be determined numerically. Asis

=1/2 in d=1 [10], and are supported by our extensive assumed to be the only relevant time scale, the scaling func-

Monte Carlo simulations i=2 and 3, are valid for alu
>u.. Indeed, Fig. 2 suggests that the predictionsutru,
[Eq. (5)] are approached asymptotically. We note thatin
=2 the relationk=vd also holds foru=u., while in d
=3 the numerical results yield<<wvd for u<u.. Since the
mass of the generated clusters scales like S~R¥”, k/v
corresponds to the fractal dimensidp of the cluster. Ind
=2 the clusters are compact for allask/v=d;=d. In d
=3 they are compact far>u., while for u<u, the fractal

dimension of clusters generated by simple random wa}ks

=2<d is obtained. At the criticality, we findd;=2.84
+0.25, but we cannot rule out the possibility tltht=d.

tions bridge the short time and the long time regime. To
match both regimes, we require that(x) =const forx<1
(t<ty), and f.(x)~xMdTD7re £ (x)~x¥277e for x>1.
Analogous results are expected fgr.(x), with g+ (x)
=const forx<1, andg, (x) ~x¥@FD~ke g (x)~x> "k for
x>1.

To test the scaling theory and to determine the exponent
a, we pIotted(Rz(t))/t?C and(S(t))/t';C as functions of/t,
for several values oft in d=2 and 3. We obtained the best
data collapse forw=5.0+0.5 ind=3 anda=7%*1 in d
=2, which are shown in Fig.(3) and 3b), respectively. The
excellent data collapse strongly supports the above scaling

To understand the behavior in the critical regime we SUgassumptions.
gest the following scaling approach. Guided by Fig. 1, we

assume that there exists a crossover tigigelow which the
exponentr is close tov., and above whichs approaches 1/2
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R(t)~t"ef . (t/t,) (6a)
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